Some classification results for generalized q-Gaussian von Neumann algebras

Marius Junge, Stephen Longfield, Bogdan Udrea

Research output: Contribution to journalArticlepeer-review

Abstract

To any trace-preserving action σ : G A of a countable discrete group G on a finite von Neumann algebra A and any orthogonal representation π : G → O(ℓ2R(G)), we associate the generalized q-Gaussian von Neumann algebra Aπσ Γq(G, K), where K is a Hilbert space. We then prove that if Gi σi (Xi, µi) is a p.m.p. free ergodic rigid action with Gi a non-amenable group having the Haagerup property and πi : Gi → O(ℓ2R(Gi)) is either trivial or given by conjugation for i = 1, 2, then L(X1) πσ11 Γq(G1, K1) = L(X2) πσ22 Γq(G2, K2) implies that the actions G1 X1, G2 X2 are stably OE. Using results of D. Gaboriau and S. Popa we construct continuously many pairwise non-isomorphic von Neumann algebras of the form L(X) πσ Γq(Fn, K) for suitable free ergodic rigid p.m.p. actions Fn X.

Original languageEnglish (US)
Pages (from-to)1-48
Number of pages48
JournalStudia Mathematica
Volume278
Issue number1
DOIs
StatePublished - 2024

Keywords

  • classification
  • orbit equivalence
  • rigidity
  • von Neumann algebras

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Some classification results for generalized q-Gaussian von Neumann algebras'. Together they form a unique fingerprint.

Cite this