Abstract
To any trace-preserving action σ : G A of a countable discrete group G on a finite von Neumann algebra A and any orthogonal representation π : G → O(ℓ2R(G)), we associate the generalized q-Gaussian von Neumann algebra Aπσ Γq(G, K), where K is a Hilbert space. We then prove that if Gi σi (Xi, µi) is a p.m.p. free ergodic rigid action with Gi a non-amenable group having the Haagerup property and πi : Gi → O(ℓ2R(Gi)) is either trivial or given by conjugation for i = 1, 2, then L∞(X1) πσ11 Γq(G1, K1) ∼= L∞(X2) πσ22 Γq(G2, K2) implies that the actions G1 X1, G2 X2 are stably OE. Using results of D. Gaboriau and S. Popa we construct continuously many pairwise non-isomorphic von Neumann algebras of the form L∞(X) πσ Γq(Fn, K) for suitable free ergodic rigid p.m.p. actions Fn X.
Original language | English (US) |
---|---|
Pages (from-to) | 1-48 |
Number of pages | 48 |
Journal | Studia Mathematica |
Volume | 278 |
Issue number | 1 |
DOIs | |
State | Published - 2024 |
Keywords
- classification
- orbit equivalence
- rigidity
- von Neumann algebras
ASJC Scopus subject areas
- General Mathematics