Solving hard coreference problems

Haoruo Peng, Daniel Khashabi, Dan Roth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Coreference resolution is a key problem in natural language understanding that still escapes reliable solutions. One fundamental difficulty has been that of resolving instances involving pronouns since they often require deep language understanding and use of background knowledge. In this paper we propose an algorithmic solution that involves a new representation for the knowledge required to address hard coreference problems, along with a constrained optimization framework that uses this knowledge in coreference decision making. Our representation, Predicate Schemas, is instantiated with knowledge acquired in an unsupervised way, and is compiled automatically into constraints that impact the coreference decision. We present a general coreference resolution system that significantly improves state-of-the-art performance on hard,Winograd-style, pronoun resolution cases, while still performing at the stateof-the-art level on standard coreference resolution datasets.

Original languageEnglish (US)
Title of host publicationNAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages809-819
Number of pages11
ISBN (Electronic)9781941643495
DOIs
StatePublished - 2015
EventConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015 - Denver, United States
Duration: May 31 2015Jun 5 2015

Publication series

NameNAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Other

OtherConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2015
Country/TerritoryUnited States
CityDenver
Period5/31/156/5/15

ASJC Scopus subject areas

  • Computer Science Applications
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Solving hard coreference problems'. Together they form a unique fingerprint.

Cite this