Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance

Jae Won Do, Noel N. Chang, David Estrada, Feifei Lian, Hyeongyun Cha, Xiangyun J. Duan, Richard T. Haasch, Eric Pop, Gregory S. Girolami, Joseph W. Lyding

Research output: Contribution to journalArticle

Abstract

As-grown randomly aligned networks of carbon nanotubes (CNTs) invariably suffer from limited transport properties due to high resistance at the crossed junctions between CNTs. In this work, Joule heating of the highly resistive CNT junctions is carried out in the presence of a spin-coated layer of a suitable chemical precursor. The heating triggers thermal decomposition of the chemical precursor, tris(dibenzylideneacetone)dipalladium (Pd2(dba)3), and causes local deposition of Pd nanoparticles at the CNT junctions, thereby improving the on/off current ratio and mobility of CNT network devices by an average factor of ∼6. This process can be conducted either in air or under vacuum depending on the characteristics of the precursor species. The solution-mediated nanosoldering process is simple, fast, scalable with manufacturing techniques, and extendable to the nanodeposition of a wide variety of materials.

Original languageEnglish (US)
Pages (from-to)4806-4813
Number of pages8
JournalACS Nano
Volume9
Issue number5
DOIs
StatePublished - May 26 2015

Keywords

  • carbon nanotubes (CNT)
  • electrical resistance
  • intertube junctions
  • nanosoldering
  • solution deposition
  • thermal resistance

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance'. Together they form a unique fingerprint.

  • Cite this

    Do, J. W., Chang, N. N., Estrada, D., Lian, F., Cha, H., Duan, X. J., Haasch, R. T., Pop, E., Girolami, G. S., & Lyding, J. W. (2015). Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance. ACS Nano, 9(5), 4806-4813. https://doi.org/10.1021/nn505552d