Solution approach for coupled diffusion-reaction-deformation problems in anisotropic materials

R. B. Hall, H. Gajendran, A. Masud, K. R. Rajagopal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A capability to model oxidizing carbon-fiber polyimide matrix composites has evolved over the past number of years at Air Force Research Laboratory [1]. Quoting [1] regarding a unidirectional non-woven fibrous layer, without cracks, "The [finite element model] requires mesh sizes in the 1-μm scale and time increments in 1-s steps. A 200-h oxidation simulation with 100-μm oxidation zone size typically requires problem sizes in the order of 100,000 degrees of freedom (DOF) and 720,000 time steps." Because of interest in a number of related problem classes including structural component scales, desire to incorporate process restrictions offered by thermodynamics, and the possible involvement of finite deformations, a mixture theory approach was developed by Hall and Rajagopal [2]. The theory is based on two constituents, an anisotropic viscous fluid and an anisotropic hyperelastic solid, which react with each other. The model considers the comparatively simple cases where conversions of species, including the associated masses, linear and angular momenta, energies and entropies, are limited to interchanges between the original fluid and solid.

Original languageEnglish (US)
Title of host publicationChallenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials - Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics
Pages83-84
Number of pages2
DOIs
StatePublished - 2013
Event2012 Annual Conference on Experimental and Applied Mechanics - Costa Mesa, CA, United States
Duration: Jun 11 2012Jun 14 2012

Publication series

NameConference Proceedings of the Society for Experimental Mechanics Series
Volume2
ISSN (Print)2191-5644
ISSN (Electronic)2191-5652

Other

Other2012 Annual Conference on Experimental and Applied Mechanics
Country/TerritoryUnited States
CityCosta Mesa, CA
Period6/11/126/14/12

ASJC Scopus subject areas

  • General Engineering
  • Computational Mechanics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Solution approach for coupled diffusion-reaction-deformation problems in anisotropic materials'. Together they form a unique fingerprint.

Cite this