Solute-induced solid-solution softening and hardening in bcc tungsten

Yong Jie Hu, Michael R. Fellinger, Brady G. Bulter, Yi Wang, Kristopher A. Darling, Laszlo J. Kecskes, Dallas R. Trinkle, Zi Kui Liu

Research output: Contribution to journalArticlepeer-review


The solute-induced softening and hardening effects in bcc W for twenty-one substitutional alloying elements (Al, Co, Cr, Fe, Hf, Ir, Mn, Mo, Nb, Ni, Os, Pd, Pt, Re, Rh, Ru, Ta, Tc, Ti, V and Zr) are examined to search for a similar softening effect as that observed with Re. The changes in energy barriers of dislocation motion caused by solute-dislocation interactions are directly computed via a first-principles approach with flexible boundary conditions. The effect of solutes on the critical resolved shear stress of the ½ <111> screw dislocation in bcc W at room temperature is quantitatively predicted, as a function of alloy concentration, via a mesoscopic solid-solution model using the first-principles results as input. Al and Mn are proposed to be promising substitutes for Re as these two elements introduce similar softening effects as Re in bcc W. In addition, the trends of the solute-dislocation interactions, and their correlations to the dislocation core structure geometries are discussed.

Original languageEnglish (US)
Pages (from-to)304-316
Number of pages13
JournalActa Materialia
StatePublished - Dec 2017


  • Dislocation theory
  • First-principles calculation
  • Solute-dislocation interaction
  • W-based alloys

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys


Dive into the research topics of 'Solute-induced solid-solution softening and hardening in bcc tungsten'. Together they form a unique fingerprint.

Cite this