Abstract
Objective - To determine the mechanism by which liver alkaline phosphatase (LALP) isoenzyme is converted from a membrane-bound enzyme to the soluble enzyme during cholestasis. Sample Population - Serum and tissues from 2 dogs. Procedure - The LALP was purified by use of affinity chromatography in samples of serum from dogs with complete bile duct obstruction. Gas chromatography/mass spectrometry was used to detect myo-inositol residues that would be evident when serum LALP had been membrane-attached and released by phospholipase activity. Exclusion chromatography, gel electrophoresis, and octyl-sepharose phase separation of the serum isolate were used to confirm cleavage of the hydrophobic membrane anchor. Western immunoblot analysis was used to distinguish release by glycosylphosphatidylinositol phospholipase D (GPI-PLD) from that by glycosylphosphatidylinositol phospholipase C (GPI-PLC). Intact hepatocytes were incubated with canine serum GPI-PLD to test sensitivity of LALP to release by GPI-PLD. Hepatocyte membrane fragments were treated with serum GPI-PLD and mixtures of taurocholate and taurodeoxycholate to test effects of bile acids on LALP release. Results - Amounts of myo-inositol per mole of serum LALP isolate were equal to amounts detected with LALP isolated from hepatic tissue. Evaluation of results of western immunoblot analysis and electrophoretic mobility suggested release by GPI-PLD rather than by GPI-PLC. Membrane-bound LALP was resistant to serum GPI-PLD activity in the absence of bile acids; however, incubation in the presence of bile acids caused release of LALP. Conclusions - Solubilization of LALP during cholestasis involves cleavage of its membrane anchor by endogenous GPI-PLD activity. Action of GPI-PLD is likely enhanced by increased concentrations of hepatic bile acids during cholestasis.
Original language | English (US) |
---|---|
Pages (from-to) | 1010-1015 |
Number of pages | 6 |
Journal | American journal of veterinary research |
Volume | 60 |
Issue number | 8 |
State | Published - Aug 1999 |
ASJC Scopus subject areas
- General Veterinary