Abstract
Sequence-specific phenylacetylene oligomers consisting of functionalized monomers (hexyl benzoate, hexyl phenyl ether, benzonitrile, and tert-butylphenyl) are synthesized in gram quantities using solid-phase methods. Growing oligomers are attached to a divinylbenzene cross-linked polystyrene support by the 1-aryl-3-propyl-3-(benzyl-supported) triazene moiety. This linkage is obtained by reaction of arenediazonium tetrafluoroborate salts with a n-propylamino-modified Merrifield resin. Condensation strategies are described, producing oligomers with higher yields and simplified procedures compared to solution-phase methods. Terminal acetylene is protected with a trimethylsilyl group. After deprotection of the resin-bound terminal acetylene, an aryl iodide monomer or an aryl iodide-terminated oligomer is coupled to the supported oligomer using a palladium(O) catalyst. The cycle can be repeated to produce sequence-specific oligomers of varying length and functionality. The resulting oligomers are liberated from the polymer support by cleavage of the 1-aryl-3-propyl-3-(benzyl-supported) triazene group by reaction with iodomethane producing an aryl iodide.
Original language | English (US) |
---|---|
Pages (from-to) | 8160-8168 |
Number of pages | 9 |
Journal | Journal of Organic Chemistry |
Volume | 61 |
Issue number | 23 |
DOIs | |
State | Published - Nov 15 1996 |
ASJC Scopus subject areas
- Organic Chemistry