TY - JOUR
T1 - Soil nitrogen cycling under contrasting management systems in Amazon Coffea canephora agroecosystems
AU - López, Rosa Elena Ibarra
AU - Navarrete, Eduardo F.Chávez
AU - Rosado, Jimmy T.Pico
AU - García, Cristian R.Subía
AU - Margenot, Andrew J.
N1 - Publisher Copyright:
© 2021 The Authors. Soil Science Society of America Journal © 2021 Soil Science Society of America
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Robusta coffee (Coffea canephora Pierre ex Froehner) is well suited to the humid tropical climate of the Amazon basin. It is often produced under contrasting conditions of low-input agroforestry systems and intensively managed monocultures that differ in N constraints on productivity. We evaluated indicators of soil N cycling and coffee plant N sufficiency using a full factorial of two input managements (organic vs. conventional) and the absence or presence of the interplanted leguminous tree (LT) Erythrina spp. in a replicated robusta coffee field trial in the Ecuadorian Amazon. Activities of soil protease, three aminopeptidases, N-acetyl-β-D-glucosaminidase, cellobiohydrolase, and β-glucosidase were evaluated in tandem with soil NH4–N and NO3–N, potentially mineralizable N (PMN), and permanganate oxidizable C (POXC), as well as coffee leaf N, leaf N/P ratio (N/P), and yield. The LT decreased soil enzyme activities, PMN, and extractable NH4–N, as well as leaf N and leaf N/P. Enzyme activities and NH4–N were greater under organic input, but conventional input resulted in greater PMN, leaf N, leaf N/P, and yield. Permanganate oxidizable C and NO3–N were similar across input and interplanting but were more variable in the presence of LT relative to its absence. Lower soil enzymatic activities, labile N pools, and leaf N in coffee systems with Erythrina spp. suggest that, although a common smallholder practice in this region, interplanting this leguminous perennial has marginal impacts on soil N cycling and may not necessarily improve N supply for robusta coffee.
AB - Robusta coffee (Coffea canephora Pierre ex Froehner) is well suited to the humid tropical climate of the Amazon basin. It is often produced under contrasting conditions of low-input agroforestry systems and intensively managed monocultures that differ in N constraints on productivity. We evaluated indicators of soil N cycling and coffee plant N sufficiency using a full factorial of two input managements (organic vs. conventional) and the absence or presence of the interplanted leguminous tree (LT) Erythrina spp. in a replicated robusta coffee field trial in the Ecuadorian Amazon. Activities of soil protease, three aminopeptidases, N-acetyl-β-D-glucosaminidase, cellobiohydrolase, and β-glucosidase were evaluated in tandem with soil NH4–N and NO3–N, potentially mineralizable N (PMN), and permanganate oxidizable C (POXC), as well as coffee leaf N, leaf N/P ratio (N/P), and yield. The LT decreased soil enzyme activities, PMN, and extractable NH4–N, as well as leaf N and leaf N/P. Enzyme activities and NH4–N were greater under organic input, but conventional input resulted in greater PMN, leaf N, leaf N/P, and yield. Permanganate oxidizable C and NO3–N were similar across input and interplanting but were more variable in the presence of LT relative to its absence. Lower soil enzymatic activities, labile N pools, and leaf N in coffee systems with Erythrina spp. suggest that, although a common smallholder practice in this region, interplanting this leguminous perennial has marginal impacts on soil N cycling and may not necessarily improve N supply for robusta coffee.
UR - http://www.scopus.com/inward/record.url?scp=85111600262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111600262&partnerID=8YFLogxK
U2 - 10.1002/saj2.20255
DO - 10.1002/saj2.20255
M3 - Article
AN - SCOPUS:85111600262
SN - 0361-5995
VL - 85
SP - 1634
EP - 1648
JO - Soil Science Society of America Journal
JF - Soil Science Society of America Journal
IS - 5
ER -