Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat

Sung Bong Kim, Jahyun Koo, Jangryeol Yoon, Aurélie Hourlier-Fargette, Boram Lee, Shulin Chen, Seongbin Jo, Jungil Choi, Yong Suk Oh, Geumbee Lee, Sang Min Won, Alexander J. Aranyosi, Stephen P. Lee, Jeffrey B. Model, Paul V. Braun, Roozbeh Ghaffari, Chulwhan Park, John A Rogers

Research output: Contribution to journalArticlepeer-review

Abstract

Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.

Original languageEnglish (US)
Pages (from-to)84-92
Number of pages9
JournalLab on a chip
Volume20
Issue number1
DOIs
StatePublished - Jan 7 2020

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Chemistry(all)
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat'. Together they form a unique fingerprint.

Cite this