TY - GEN
T1 - SoF
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
AU - Zhao, Han
AU - Poupart, Pascal
AU - Zhang, Yongfeng
AU - Lysy, Martin
N1 - Publisher Copyright:
© 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - We propose SoF (Soft-cluster matrix Factorization), a probabilistic clustering algorithm which softly assigns each data point into clusters. Unlike model-based clustering algorithms, SoF does not make assumptions about the data density distribution. Instead, we take an axiomatic approach to define 4 properties that the probability of co-clustered pairs of points should satisfy. Based on the properties, SoF utilizes a distance measure between pairs of points to induce the conditional co-cluster probabilities. The objective function in our framework establishes an important connection between probabilistic clustering and constrained symmetric Nonnegalive Matrix Factorization (NMF), hence providing a theoretical interpretation for NMF-based clustering algorithms. To optimize the objective, we derive a sequential minimization algorithm using a penalty method. Experimental results on both synthetic and real-world datasets show that SoF significantly outperforms previous NMF-based algorithms and that it is able to detect non-convex patterns as well as cluster boundaries.
AB - We propose SoF (Soft-cluster matrix Factorization), a probabilistic clustering algorithm which softly assigns each data point into clusters. Unlike model-based clustering algorithms, SoF does not make assumptions about the data density distribution. Instead, we take an axiomatic approach to define 4 properties that the probability of co-clustered pairs of points should satisfy. Based on the properties, SoF utilizes a distance measure between pairs of points to induce the conditional co-cluster probabilities. The objective function in our framework establishes an important connection between probabilistic clustering and constrained symmetric Nonnegalive Matrix Factorization (NMF), hence providing a theoretical interpretation for NMF-based clustering algorithms. To optimize the objective, we derive a sequential minimization algorithm using a penalty method. Experimental results on both synthetic and real-world datasets show that SoF significantly outperforms previous NMF-based algorithms and that it is able to detect non-convex patterns as well as cluster boundaries.
UR - http://www.scopus.com/inward/record.url?scp=84960088238&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960088238&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84960088238
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 3188
EP - 3195
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
Y2 - 25 January 2015 through 30 January 2015
ER -