SNR maximization hashing for learning compact binary codes

Honghai Yu, Pierre Moulin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose a novel robust hashing algorithm based on signal-to-noise ratio (SNR) maximization to learn binary codes. We first motivate SNR maximization for robust hashing in a statistical model, under which maximizing SNR minimizes the robust hashing error probability. A globally optimal solution can be obtained by solving a generalized eigenvalue problem. The proposed algorithm is tested on both synthetic and real datasets, showing significant performance gain over existing hashing algorithms.

Original languageEnglish (US)
Title of host publication2015 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1692-1696
Number of pages5
ISBN (Electronic)9781467369978
DOIs
StatePublished - Aug 4 2015
Event40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Brisbane, Australia
Duration: Apr 19 2014Apr 24 2014

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2015-August
ISSN (Print)1520-6149

Other

Other40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
Country/TerritoryAustralia
CityBrisbane
Period4/19/144/24/14

Keywords

  • Robust hashing
  • SNR maximization
  • content identification
  • generalized eigenproblem

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'SNR maximization hashing for learning compact binary codes'. Together they form a unique fingerprint.

Cite this