SiNUCA: A validated micro-architecture simulator

Marco Antonio Zanata Alves, Matthias Diener, Francis Birck Moreira, Philippe Olivier Alexandre Navaux, Carlos Villavieja

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In order to observe and understand the architectural behavior of applications and evaluate new techniques, computer architects often use simulation tools. Several cycle-accurate simulators have been proposed to simulate the operation of the processor on the micro-architectural level. However, an important step before adopting a simulator is its validation, in order to determine how accurate the simulator is compared to a real machine. This validation step is often neglected with the argument that only the industry possesses the implementation details of the architectural components. The lack of publicly available micro-benchmarks that are capable of providing insights about the processor implementation is another barrier. In this paper, we present the validation of a new cycle-accurate, trace-driven simulator, SiNUCA. To perform the validation, we introduce a new set of micro-benchmarks to evaluate the performance of architectural components. SiNUCA provides a controlled environment to simulate the micro-architecture inside the cores, the cache memory sub-system with multi-banked caches, a NoC interconnection and a detailed memory controller. Using our micro-benchmarks, we present a simulation validation comparing the performance of real Core 2 Duo and Sandy-Bridge processors, achieving an average performance error of less than 9%.

Original languageEnglish (US)
Title of host publicationProceedings - 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th International Conference on Embedded Software and Systems, HPCC-CSS-ICESS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages605-610
Number of pages6
ISBN (Electronic)9781479989362
DOIs
StatePublished - Nov 23 2015
Externally publishedYes
Event17th IEEE International Conference on High Performance Computing and Communications, IEEE 7th International Symposium on Cyberspace Safety and Security and IEEE 12th International Conference on Embedded Software and Systems, HPCC-ICESS-CSS 2015 - New York, United States
Duration: Aug 24 2015Aug 26 2015

Publication series

NameProceedings - 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th International Conference on Embedded Software and Systems, HPCC-CSS-ICESS 2015

Other

Other17th IEEE International Conference on High Performance Computing and Communications, IEEE 7th International Symposium on Cyberspace Safety and Security and IEEE 12th International Conference on Embedded Software and Systems, HPCC-ICESS-CSS 2015
Country/TerritoryUnited States
CityNew York
Period8/24/158/26/15

Keywords

  • Cycle-accurate
  • Micro-architecture
  • Simulation
  • Trace-driven

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'SiNUCA: A validated micro-architecture simulator'. Together they form a unique fingerprint.

Cite this