TY - JOUR
T1 - Singularity of radial subalgebras in II1 factors associated with free products of groups
AU - Boca, Florin
AU - Rǎdulescu, Florin
PY - 1992/1
Y1 - 1992/1
N2 - Let G be the free product of N groups each having order k ≤ N and let A be the maximal abelian subalgebra of the group von Neumann algebra L(G), called the radial algebra of G. The Pukánszky invariant of the abelian algebra A=(A ∨ JAJ)″ is computed in this case. If N ≥ 3, A is isomorphic to A ⊕ (A ⊗ A) and A is singular. If N = k = 2, A is isomorphic to A ⊕ A and A is a Cartan subalgebra.
AB - Let G be the free product of N groups each having order k ≤ N and let A be the maximal abelian subalgebra of the group von Neumann algebra L(G), called the radial algebra of G. The Pukánszky invariant of the abelian algebra A=(A ∨ JAJ)″ is computed in this case. If N ≥ 3, A is isomorphic to A ⊕ (A ⊗ A) and A is singular. If N = k = 2, A is isomorphic to A ⊕ A and A is a Cartan subalgebra.
UR - http://www.scopus.com/inward/record.url?scp=38249015928&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38249015928&partnerID=8YFLogxK
U2 - 10.1016/0022-1236(92)90139-A
DO - 10.1016/0022-1236(92)90139-A
M3 - Article
AN - SCOPUS:38249015928
SN - 0022-1236
VL - 103
SP - 138
EP - 159
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 1
ER -