Single polymer dynamics offers a powerful approach to study molecular-level interactions and dynamic microstructure in materials. Direct visualization of single polymer chains has uncovered new ideas regarding the rheology and nonequilibrium dynamics of macromolecules, including the importance of molecular individualism, dynamic heterogeneity, and molecular subpopulations in governing macroscopic behavior. In recent years, the field of single polymer dynamics has been extended to new materials, including architecturally complex polymers such as combs, bottlebrushes, and ring polymers and entangled solutions of long chain polymers in flow. Single molecule visualization, complemented by modeling and simulation techniques such as Brownian dynamics and Monte Carlo methods, allow for unparalleled access to the molecular-scale dynamics of polymeric materials. In this review, recent progress in the field of single polymer dynamics is examined by highlighting major developments and new physics to emerge from these techniques. The molecular properties of deoxyribonucleic acid as a model polymer are examined, including the role of flexibility, excluded volume interactions, and hydrodynamic interactions in governing behavior. Recent developments in studying polymer dynamics in time-dependent flows, new chemistries and new molecular topologies, and the role of intermolecular interactions in concentrated solutions are considered. Moreover, cutting-edge methods in simulation techniques are further reviewed as an ideal complementary method to single polymer experiments. Future work aimed at extending the field of single polymer dynamics to new materials promises to uncover original and unexpected information regarding the flow dynamics of polymeric systems.

Original languageEnglish (US)
Pages (from-to)371-403
Number of pages33
JournalJournal of Rheology
Issue number1
StatePublished - Jan 1 2018

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Single polymer dynamics for molecular rheology'. Together they form a unique fingerprint.

Cite this