Abstract
We use single molecule methods to directly observe the enzymatic behavior of individual reverse transcriptase (RT) molecules on single-stranded DNA template strands in vitro. A flow-stretched DNA assay is used, allowing for characterization of enzymatic rate, processivity, and pausing of RT during DNA synthesis as a function of template base pair content, secondary structure, and applied template tension. We study the kinetics of plus-strand DNA synthesis catalyzed by RT derived from the Moloney murine leukemia virus (M-MLV) with inhibited RNase H activity, an enzyme commonly used for RT-PCR. Initial observations show an average enzymatic rate of ∼5-10 bp/sec. Understanding potentially diverse kinetic mechanisms in molecular subpopulations may allow for development of more effective treatments for retroviral infections leading to cancer.
Original language | English (US) |
---|---|
Pages | 8076 |
Number of pages | 1 |
State | Published - 2005 |
Externally published | Yes |
Event | 05AIChE: 2005 AIChE Annual Meeting and Fall Showcase - Cincinnati, OH, United States Duration: Oct 30 2005 → Nov 4 2005 |
Other
Other | 05AIChE: 2005 AIChE Annual Meeting and Fall Showcase |
---|---|
Country/Territory | United States |
City | Cincinnati, OH |
Period | 10/30/05 → 11/4/05 |
ASJC Scopus subject areas
- General Engineering