Abstract
A novel impedimetric immunosensor for the detection of a wide variety of compounds, based on a two coplanar non-passivated interdigitated metallic μ-electrodes and non-labeled immunoreactives, has been designed and developed. A very useful detection method is the impedance spectroscopy sweeping a wide frequency range. This is a powerful, but cumbersome tool to study the sensor performance providing trustworthy results. In this work, it is shown that the exploitation of the changes observed of the impedance at a single frequency provide very good correlation with antibody concentration and hence greatly reduces the signal acquisition and processing complexity. It has thereby a great potential for low cost, low power, fast response and simple use for the in-field or at-line applications. In this work, the application of the method to atrazine detection is described. The results show that the immunosensor signal is a function of the pesticide concentration following a competitive binding relationship, with limits of detection lower than the maximum residue level required by EC for atrazine in wine grapes and other foodstuff products.
Original language | English (US) |
---|---|
Pages (from-to) | 921-928 |
Number of pages | 8 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 129 |
Issue number | 2 |
DOIs | |
State | Published - Feb 22 2008 |
Externally published | Yes |
Keywords
- Atrazine
- Immunosensor
- Impedance spectroscopy
- Interdigitated μ-electrodes
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry