Simultaneous Process and Material Design for Aprotic N-Heterocyclic Anion Ionic Liquids in Postcombustion CO2 Capture

Bo Hong, Luke D. Simoni, Joshua E. Bennett, Joan F. Brennecke, Mark A. Stadtherr

Research output: Contribution to journalArticlepeer-review


Aprotic heterocyclic anion ionic liquids (AHAs) are a promising new class of CO2 absorbents, with a capacity of one mole of CO2 chemically absorbed per mole of AHA. By tailoring the substituents on the anion, the AHA properties, in particular the enthalpy of absorption, can be tuned over a wide range. Furthermore, the entropy of absorption can be tuned by tailoring substituents on the cation. This then presents a materials design challenge - What are the optimal AHA properties? This challenge is addressed by incorporating AHAs into a simple process model of CO2 capture from postcombustion flue gas, and formulating the question as a type of simultaneous materials and process design problem. New absorption isotherm data is presented, over a larger pressure range than studied previously, for a few AHAs, and is used to suggest a simple thermodynamic model for CO2 uptake, to be used in connection with the process model. The possibility of ionic liquids (ILs) that exhibit a 2:1 CO2 uptake (two moles CO2 per mole IL) with a cooperative binding mechanism is also considered, with absorption isotherm data for one such compound presented, together with a corresponding isotherm model. The process model is an equilibrium-based material and energy balance model, which is used to determine flow rates, heat duties, and process conditions that minimize a simple energy usage objective function. The sensitivity of this optimum with respect to various material properties and process parameters is studied, for flue gas from both pulverized coal and natural gas combined cycle power plants. The results provide materials property targets for the identification of new AHA molecules for CO2 capture, leading to significant reductions in heat requirements relative to conventional amine technology.

Original languageEnglish (US)
Pages (from-to)8432-8449
Number of pages18
JournalIndustrial and Engineering Chemistry Research
Issue number30
StatePublished - Aug 3 2016

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Simultaneous Process and Material Design for Aprotic N-Heterocyclic Anion Ionic Liquids in Postcombustion CO2 Capture'. Together they form a unique fingerprint.

Cite this