Simultaneous photoacoustic imaging of intravascular and tissue oxygenation

Maomao Chen, Hailey J. Knox, Yuqi Tang, Wei Liu, Liming Nie, Jefferson Chan, Junjie Yao

Research output: Contribution to journalArticlepeer-review


Hypoxia, a low tissue oxygenation condition caused by insufficient oxygen supply, leads to potentially irreversible tissue damage, such as brain infarction during stroke. Intravascular oxygenation has long been used by photoacoustic imaging, among other imaging modalities, to study hypoxia. However, intravascular oxygenation describes only the oxygen supply via microcirculation, which does not directly reflect the amount of free oxygen available for metabolism in the interstitial fluid. Therefore, to fully understand hypoxia, it is highly desirable to monitor blood oxygenation as well as tissue oxygenation during the same biological process. In this work, by combining high-resolution photoacoustic microscopy (PAM) and a novel bioreducible N -oxide-based hypoxia-sensitive probe HyP-650, we have demonstrated simultaneous imaging of intravascular oxygenation and tissue hypoxia. We have established detailed chemical, optical, and photoacoustic properties of HyP-650 for hypoxic activation in vitro and in living cells. We have also performed PAM on hindlimb ischemia models and tumor-bearing mice to study the correlation between intravascular oxygenation and tissue oxygenation at various hypoxic levels. We expect that Hyp-650 enhanced photoacoustic imaging will find a variety of applications in brain and cancer research.

Original languageEnglish (US)
Pages (from-to)3773-3776
Number of pages4
JournalOptics Letters
Issue number15
StatePublished - Aug 1 2019

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Simultaneous photoacoustic imaging of intravascular and tissue oxygenation'. Together they form a unique fingerprint.

Cite this