TY - GEN
T1 - Simultaneous high speed (5 kHz) Fuel-PLIF, OH-PLIF and stereo PIV imaging of pressurized swirl-stabilized flames using liquid fuels
AU - Chterev, Ianko
AU - Rock, Nicholas
AU - Ek, Hanna
AU - Emerson, Benjamin
AU - Seitzman, Jerry
AU - Lieuwen, Timothy
AU - Lee, Tonghun
AU - Jiang, Naibo
AU - Roy, Sukesh
AU - Gord, James
N1 - Publisher Copyright:
© 2017 by Ianko Chterev, Nicholas Rock, Hanna Ek, Benjamin Emerson, Jerry Seitzman, Timothy Lieuwen, Tonghun Lee, Naibo Jiang, Sukesh Roy, James Gord.
PY - 2017
Y1 - 2017
N2 - This paper describes implementation of simultaneous, high speed (5 kHz) stereo PIV, OH and fuel-PLIF in a pressurized (up to 5.2 atm), liquid fueled, swirl stabilized flame, representative of a gas turbine combustor. The experiments were performed to characterize the flowfield, qualitative heat release and fuel spray distributions, and flame dynamics. Acquiring high speed OH-PLIF in pressurized, liquid fuel systems is difficult due to the fuel’s absorption and emission spectra strongly overlapping that of the OH fluorescence spectrum. To overcome the fuel emission polluting the OH signal, the OH and fuel fluorescence signals were partially separated by using two cameras with differing spectral filters and data acquisition timing, as the emission from OH and fuel differ both in spectral width and time. The first camera captured only fuel-PLIF, while the second captured fuel-PLIF and OH-PLIF. The fuel-PLIF images were used to compute two intensity thresholds, separating each image into regions of no fuel, fuel only and an intermediate region. In the region of no fuel, OH was detected in the second camera. In the intermediate region there was a mix of fuel and OH. Instantaneous and time-averaged results are discussed showing the flow field, flame position and dynamics, and spray distribution from the fuel signal for two different multi-component liquid fuels (Jet-A and C-5), at two inlet temperatures of 450 and 570 K, and three pressure of 2.1, 3.5 and 5.2 bar. The flame shape in some cases is described as M-shaped, existing both inside and outside of the annular swirling jet produced by the nozzle, while in other cases no reaction is apparent on the inside. The spray penetration and distribution, and flame position are sensitive to the various conditions, while the flow field topology is qualitatively insensitive. Furthermore, elevated pressure as expected sharpens all spatial gradients in the data.
AB - This paper describes implementation of simultaneous, high speed (5 kHz) stereo PIV, OH and fuel-PLIF in a pressurized (up to 5.2 atm), liquid fueled, swirl stabilized flame, representative of a gas turbine combustor. The experiments were performed to characterize the flowfield, qualitative heat release and fuel spray distributions, and flame dynamics. Acquiring high speed OH-PLIF in pressurized, liquid fuel systems is difficult due to the fuel’s absorption and emission spectra strongly overlapping that of the OH fluorescence spectrum. To overcome the fuel emission polluting the OH signal, the OH and fuel fluorescence signals were partially separated by using two cameras with differing spectral filters and data acquisition timing, as the emission from OH and fuel differ both in spectral width and time. The first camera captured only fuel-PLIF, while the second captured fuel-PLIF and OH-PLIF. The fuel-PLIF images were used to compute two intensity thresholds, separating each image into regions of no fuel, fuel only and an intermediate region. In the region of no fuel, OH was detected in the second camera. In the intermediate region there was a mix of fuel and OH. Instantaneous and time-averaged results are discussed showing the flow field, flame position and dynamics, and spray distribution from the fuel signal for two different multi-component liquid fuels (Jet-A and C-5), at two inlet temperatures of 450 and 570 K, and three pressure of 2.1, 3.5 and 5.2 bar. The flame shape in some cases is described as M-shaped, existing both inside and outside of the annular swirling jet produced by the nozzle, while in other cases no reaction is apparent on the inside. The spray penetration and distribution, and flame position are sensitive to the various conditions, while the flow field topology is qualitatively insensitive. Furthermore, elevated pressure as expected sharpens all spatial gradients in the data.
UR - http://www.scopus.com/inward/record.url?scp=85017278656&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017278656&partnerID=8YFLogxK
U2 - 10.2514/6.2017-0152
DO - 10.2514/6.2017-0152
M3 - Conference contribution
AN - SCOPUS:85017278656
T3 - AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
BT - AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 55th AIAA Aerospace Sciences Meeting
Y2 - 9 January 2017 through 13 January 2017
ER -