Simulation of plasma interaction with Io's atmosphere

Chris H. Moore, Hao Deng, David B. Goldstein, Deborah Levin, Philip L. Varghese, Laurence M. Trafton, Bénédicte D. Stewart, Andrew C. Walker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

One dimensional Direct Simulation Monte Carlo (DSMC) simulations are used to examine the interaction of the jovian plasma torus with Io's sublimation atmosphere. The hot plasma sweeps past Io at ∼57 km/s due to the external Jovian magnetic and corotational electric fields and the resultant energetic collisions both heat and dissociate the neutral gas creating an inflated, mixed atmosphere of SO2 and its daughter products. The vertical structure and composition of the atmosphere is important for understanding Io's mass loading of the plasma torus, electron excited aurora, and Io's global gas dynamics. Our 1D simulations above a fixed location on the surface of Io allows the O+ and S+ ions to drift down into the domain where they then undergo elastic and charge exchange collisions with the neutral gas. Each electron's position is determined by the motion of a corresponding ion; however, the electrons retain their own velocity components which are then used during elastic, ionization, and excitation collisions with the neutral gas. Charge exchange creates fast neutral O and S atoms. Molecular Dynamic/Quasi-Classical Trajectory (MD/QCT) calculations are used to generate total and reaction cross sections for energetic O+SO2 collisions [1] as well as for O+O2 collisions. In addition, the model accounts for photo-dissociation assuming the atmosphere is optically thin. Our previous plasma heating model (without chemistry) agrees well with the vertical structure of the current model at lower altitudes where the gas is collisional; however, at high altitudes (>100 km) significant differences among the models appear. The current model's constant E and B fields results in reacceleration of the ions and electrons to a constant E×B drift velocity towards the surface after collisions with the neutral gas and, while the results are an upper limit on the plasma interaction strength, the results indicate that joule heating is significant, causing large changes in the vertical structure of the atmosphere. Plasma heating of, not momentum transfer to, the atmosphere dominates even for radially inward plasma flows resulting in a hot, inflated atmosphere. The scale heights for the various species were found to be a competition between the hydrodynamic scale height based on the gas constant (for the mixture if collisional) and the production rate from dissociation of SO2 which depends on the local SO2 density and available plasma energy at that altitude.

Original languageEnglish (US)
Title of host publication27th International Symposium on Rarefied Gas Dynamics - 2010, RGD27
Pages1163-1168
Number of pages6
EditionPART 1
DOIs
StatePublished - Oct 18 2011
Externally publishedYes
Event27th International Symposium on Rarefied Gas Dynamics, RGD27 - Pacific Grove, CA, United States
Duration: Jul 10 2011Jul 15 2011

Publication series

NameAIP Conference Proceedings
NumberPART 1
Volume1333
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other27th International Symposium on Rarefied Gas Dynamics, RGD27
CountryUnited States
CityPacific Grove, CA
Period7/10/117/15/11

Keywords

  • Atmospheric dynamics
  • Io
  • Plasma

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Simulation of plasma interaction with Io's atmosphere'. Together they form a unique fingerprint.

  • Cite this

    Moore, C. H., Deng, H., Goldstein, D. B., Levin, D., Varghese, P. L., Trafton, L. M., Stewart, B. D., & Walker, A. C. (2011). Simulation of plasma interaction with Io's atmosphere. In 27th International Symposium on Rarefied Gas Dynamics - 2010, RGD27 (PART 1 ed., pp. 1163-1168). (AIP Conference Proceedings; Vol. 1333, No. PART 1). https://doi.org/10.1063/1.3562801