TY - JOUR
T1 - Simulation of multiconductor transmission lines using krylov subspace order-reduction techniques
AU - Celik, Mustafa
AU - Cangellaris, Andréas C.
N1 - Funding Information:
Manuscript received November 9, 1995; revised December 19, 1996. This work was supported in part by the Semiconductor Research Corporation under Contract 95-PP-086. This paper was recommended by Associate Editor J. White.
PY - 1997
Y1 - 1997
N2 - A mathematical model for lossy, multiconductor transmission lines is introduced to facilitate the efficient application of Krylov subspace order-reduction techniques to the analysis of linear networks with transmission line systems. The model is based on the use of Chebyshev polynomial expansions for the approximation of the spatial variation of the transmission-line voltages and currents. The exponential convergence of Chebyshev expansions, combined with a simple collocation procedure, leads to a low-order matrix representation of the transmission line equations with matrix coefficients that are first polynomials in the Laplace variable s, and in which terminal transmissionline voltages and currents appear explicitly. Thus, the resulting low-order model is compatible with both Krylov subspace orderreduction methods (such as the Lanczos and the Arnold! processes) and the modified nodal analysis formalism. The accuracy and efficiency of the proposed model, as well as its compatibility with Krylov subspace order reduction, are demonstrated through its application to the numerical simulation of several interconnect circuits.
AB - A mathematical model for lossy, multiconductor transmission lines is introduced to facilitate the efficient application of Krylov subspace order-reduction techniques to the analysis of linear networks with transmission line systems. The model is based on the use of Chebyshev polynomial expansions for the approximation of the spatial variation of the transmission-line voltages and currents. The exponential convergence of Chebyshev expansions, combined with a simple collocation procedure, leads to a low-order matrix representation of the transmission line equations with matrix coefficients that are first polynomials in the Laplace variable s, and in which terminal transmissionline voltages and currents appear explicitly. Thus, the resulting low-order model is compatible with both Krylov subspace orderreduction methods (such as the Lanczos and the Arnold! processes) and the modified nodal analysis formalism. The accuracy and efficiency of the proposed model, as well as its compatibility with Krylov subspace order reduction, are demonstrated through its application to the numerical simulation of several interconnect circuits.
UR - http://www.scopus.com/inward/record.url?scp=0031146062&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031146062&partnerID=8YFLogxK
U2 - 10.1109/43.631211
DO - 10.1109/43.631211
M3 - Article
AN - SCOPUS:0031146062
SN - 0278-0070
VL - 16
SP - 485
EP - 496
JO - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
JF - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
IS - 5
ER -