Simulation of a quantum-dot flash memory

G. Iannaccone, A. Trellakis, U. Ravaioli

Research output: Contribution to journalArticlepeer-review

Abstract

We present the simulation of a flash memory in which the floating gate is replaced by a silicon quantum dot. Unlike conventional flash memories, this device promises the advantage of self-limited direct charging of the floating gate with a low writing voltage, thus allowing one to overcome hot carrier degradation problems. Due to the small dimensions of this memory device, quantum effects are expected to play an important role. To estimate their magnitude, we compare a semiclassical simulation based on the solution of Poisson's equation with a quantum computation solving the complete system of Schrödinger's and Poisson's equation. Despite the three-dimensional nature of the problem, a two-dimensional computational mesh proved to be sufficient to provide good agreement with experimental results, after three-dimensional corrections were included.

Original languageEnglish (US)
Pages (from-to)5032-5036
Number of pages5
JournalJournal of Applied Physics
Volume84
Issue number9
DOIs
StatePublished - Nov 1 1998

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Simulation of a quantum-dot flash memory'. Together they form a unique fingerprint.

Cite this