Simulating emergent properties of human driving behavior using multi-agent reward augmented imitation learning

Raunak P. Bhattacharyya, Derek J. Phillips, Changliu Liu, Jayesh K. Gupta, Katherine Driggs-Campbell, Mykel J. Kochenderfer

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Recent developments in multi-agent imitation learning have shown promising results for modeling the behavior of human drivers. However, it is challenging to capture emergent traffic behaviors that are observed in real-world datasets. Such behaviors arise due to the many local interactions between agents that are not commonly accounted for in imitation learning. This paper proposes Reward Augmented Imitation Learning (RAIL), which integrates reward augmentation into the multi-agent imitation learning framework and allows the designer to specify prior knowledge in a principled fashion. We prove that convergence guarantees for the imitation learning process are preserved under the application of reward augmentation. This method is validated in a driving scenario, where an entire traffic scene is controlled by driving policies learned using our proposed algorithm. Further, we demonstrate improved performance in comparison to traditional imitation learning algorithms both in terms of the local actions of a single agent and the behavior of emergent properties in complex, multi-agent settings.

Original languageEnglish (US)
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages7
ISBN (Electronic)9781538660263
StatePublished - May 2019
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: May 20 2019May 24 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729


Conference2019 International Conference on Robotics and Automation, ICRA 2019

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Control and Systems Engineering

Cite this