Abstract
We describe the use of semiconductor nanomaterials, advanced fabrication methods and unusual device designs for a class of electronics capable of integration onto the inner and outer surfaces of thin, elastomeric sheets in closed-tube geometries, specially formed for mounting on the fingertips. Multifunctional systems of this type allow electrotactile stimulation with electrode arrays multiplexed using silicon nanomembrane (Si NM) diodes, high-sensitivity strain monitoring with Si NM gauges, and tactile sensing with elastomeric capacitors. Analytical calculations and finite element modeling of the mechanics quantitatively capture the key behaviors during fabrication/assembly, mounting and use. The results provide design guidelines that highlight the importance of the NM geometry in achieving the required mechanical properties. This type of technology could be used in applications ranging from human-machine interfaces to instrumented surgical gloves and many others.
Original language | English (US) |
---|---|
Article number | 344004 |
Journal | Nanotechnology |
Volume | 23 |
Issue number | 34 |
DOIs | |
State | Published - Aug 31 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering