Silhouette guided point cloud reconstruction beyond occlusion

Chuhang Zou, Derek Hoiem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

One major challenge in 3D reconstruction is to infer the complete shape geometry from partial foreground occlusions. In this paper, we propose a method to reconstruct the complete 3D shape of an object from a single RGB image, with robustness to occlusion. Given the image and a silhouette of the visible region, our approach completes the silhouette of the occluded region and then generates a point cloud. We show improvements for reconstruction of non-occluded and partially occluded objects by providing the predicted complete silhouette as guidance. We also improve state-of-the-art for 3D shape prediction with a 2D reprojection loss from multiple synthetic views and a surface-based smoothing and refinement step. Experiments demonstrate the efficacy of our approach both quantitatively and qualitatively on synthetic and real scene datasets.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages41-50
Number of pages10
ISBN (Electronic)9781728165530
DOIs
StatePublished - Mar 2020
Event2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, United States
Duration: Mar 1 2020Mar 5 2020

Publication series

NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

Conference

Conference2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
CountryUnited States
CitySnowmass Village
Period3/1/203/5/20

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Silhouette guided point cloud reconstruction beyond occlusion'. Together they form a unique fingerprint.

Cite this