Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization

Dingwen Tao, Sheng Di, Zizhong Chen, Franck Cappello

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Today's HPC applications are producing extremely large amounts of data, such that data storage and analysis are becoming more challenging for scientific research. In this work, we design a new error-controlled lossy compression algorithm for large-scale scientific data. Our key contribution is significantly improving the prediction hitting rate (or prediction accuracy) for each data point based on its nearby data values along multiple dimensions. We derive a series of multilayer prediction formulas and their unified formula in the context of data compression. One serious challenge is that the data prediction has to be performed based on the preceding decompressed values during the compression in order to guarantee the error bounds, which may degrade the prediction accuracy in turn. We explore the best layer for the prediction by considering the impact of compression errors on the prediction accuracy. Moreover, we propose an adaptive error-controlled quantization encoder, which can further improve the prediction hitting rate considerably. The data size can be reduced significantly after performing the variable-length encoding because of the uneven distribution produced by our quantization encoder. We evaluate the new compressor on production scientific data sets and compare it with many other state-of-the-art compressors: GZIP, FPZIP, ZFP, SZ-1.1, and ISABELA. Experiments show that our compressor is the best in class, especially with regard to compression factors (or bit-rates) and compression errors (including RMSE, NRMSE, and PSNR). Our solution is better than the second-best solution by more than a 2x increase in the compression factor and 3.8x reduction in the normalized root mean squared error on average, with reasonable error bounds and user-desired bit-rates.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium, IPDPS 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1129-1139
Number of pages11
ISBN (Electronic)9781538639146
DOIs
StatePublished - Jun 30 2017
Event31st IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017 - Orlando, United States
Duration: May 29 2017Jun 2 2017

Publication series

NameProceedings - 2017 IEEE 31st International Parallel and Distributed Processing Symposium, IPDPS 2017

Other

Other31st IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017
Country/TerritoryUnited States
CityOrlando
Period5/29/176/2/17

ASJC Scopus subject areas

  • Information Systems
  • Computer Networks and Communications
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization'. Together they form a unique fingerprint.

Cite this