TY - GEN
T1 - Shock induced detonations in composite heterogeneous energetic materials
AU - Shukla, R. K.
AU - Pantano-Rubino, Carlos A
AU - Jackson, T. L.
AU - Austin, J. M.
AU - Freund, Jonathan
PY - 2009/12/1
Y1 - 2009/12/1
N2 - Solid energetic materials are used in a wide variety of applications, including solid rocket motors, munitions, explosives for construction and demolition, automotive airbags, and pyrotechnic fasteners and actuators for space applications. An understanding of their potential for initiation and explosion is vital for their safe storage, handling, and transportation. Because of the rich phenomenology associate with microstructural geometric features, such pack as morphology, the presence of voids, and the type of binder, one-dimensional empirical models will be limited in predicting the shock sensitivity of energetic materials for a wide variety of insults. Therefore, the goal of our research is to develop a multidimensional shock-sensitivity model that accounts for microstructural geometric features. Here, we report a novel shock capturing multi-phase flow solver, which combines the features of a level-set method and a time dependent mesh redistribution technique. Numerical simulations of multi-material inert shock problems and detonation initiation through localized thermal energy deposition are used to demonstrate the method.
AB - Solid energetic materials are used in a wide variety of applications, including solid rocket motors, munitions, explosives for construction and demolition, automotive airbags, and pyrotechnic fasteners and actuators for space applications. An understanding of their potential for initiation and explosion is vital for their safe storage, handling, and transportation. Because of the rich phenomenology associate with microstructural geometric features, such pack as morphology, the presence of voids, and the type of binder, one-dimensional empirical models will be limited in predicting the shock sensitivity of energetic materials for a wide variety of insults. Therefore, the goal of our research is to develop a multidimensional shock-sensitivity model that accounts for microstructural geometric features. Here, we report a novel shock capturing multi-phase flow solver, which combines the features of a level-set method and a time dependent mesh redistribution technique. Numerical simulations of multi-material inert shock problems and detonation initiation through localized thermal energy deposition are used to demonstrate the method.
UR - http://www.scopus.com/inward/record.url?scp=85081522623&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081522623&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781563479762
T3 - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
BT - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
T2 - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
Y2 - 2 August 2009 through 5 August 2009
ER -