@inproceedings{5d5a359de2ea4f82a2ecee760b08db8c,
title = "Shock compression dynamics under a microscope",
abstract = "Our laboratory has developed a tabletop laser miniflyer launcher used for a wide variety of studies in the physical and chemical sciences. The flyers, typically 0.7 mm in diameter, can be used to shock microgram quantities of interesting materials. Frequently 100 shock experiments per day are performed. A microscope objective transmits the photon Doppler velocimeter (PDV) flyer plate diagnostic and various laser beams, and collects signals from the shocked materials that can be transmitted to video cameras, spectrographs, streak cameras, etc. In this paper I describe the flyer plate apparatus and then discuss three recent efforts: (1) Shock dissipation in nanoporous media; (2) Probing micropressures in shocked microstructured media; and (3) Shock initiation of nanotechnology reactive materials.",
author = "Dlott, {Dana D.}",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.; 19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015 ; Conference date: 14-06-2015 Through 19-06-2015",
year = "2017",
month = jan,
day = "13",
doi = "10.1063/1.4971456",
language = "English (US)",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Ramon Ravelo and Thomas Sewell and Ricky Chau and Timothy Germann and Oleynik, {Ivan I.} and Suhithi Peiris",
booktitle = "Shock Compression of Condensed Matter - 2015",
}