Abstract
Translation-invariant denoising was introduced by Coifman and Donoho to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a simple averaging of the shrinkage estimates over a family of cyclic spatial-shifts of the image. Shift-invariant denoising is denoising in an overcomplete basis, and work in this area has been devoted towards finding a best basis in the overcomplete family. This paper presents a Maximum A Posteriori (MAP) framework for shift-invariant restoration of images using the maximum-entropy prior consistent with moment constraints on the transform coefficients in different subbands. The simple averaging of estimates in the classical shift-invariant denoising can then be shown to be a certain limiting case within this framework.
Original language | English (US) |
---|---|
Pages | [d]270-272 |
State | Published - 2000 |
Event | International Conference on Image Processing (ICIP 2000) - Vancouver, BC, Canada Duration: Sep 10 2000 → Sep 13 2000 |
Other
Other | International Conference on Image Processing (ICIP 2000) |
---|---|
Country/Territory | Canada |
City | Vancouver, BC |
Period | 9/10/00 → 9/13/00 |
ASJC Scopus subject areas
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering