Shear rate sensitizes bacterial pathogens to H2O2 stress

Gilberto C. Padron, Alexander M. Shuppara, Anuradha Sharma, Matthias D. Koch, Jessica Jae S. Palalay, Jana N. Radin, Thomas E. Kehl-Fie, James A. Imlay, Joseph E. Sanfilippo

Research output: Contribution to journalArticlepeer-review


Cells regularly experience fluid flow in natural systems. However, most experimental systems rely on batch cell culture and fail to consider the effect of flow-driven dynamics on cell physiology. Using microfluidics and single-cell imaging, we discover that the interplay of physical shear rate (a measure of fluid flow) and chemical stress trigger a transcriptional response in the human pathogen Pseudomonas aeruginosa. In batch cell culture, cells protect themselves by quickly scavenging the ubiquitous chemical stressor hydrogen peroxide (H2O2) from the media. In microfluidic conditions, we observe that cell scavenging generates spatial gradients of H2O2. High shear rates replenish H2O2, abolish gradients, and generate a stress response. Combining mathematical simulations and biophysical experiments, we find that flow triggers an effect like "wind-chill"that sensitizes cells to H2O2 concentrations 100 to 1,000 times lower than traditionally studied in batch cell culture. Surprisingly, the shear rate and H2O2 concentration required to generate a transcriptional response closely match their respective values in the human bloodstream. Thus, our results explain a long-standing discrepancy between H2O2 levels in experimental and host environments. Finally, we demonstrate that the shear rate and H2O2 concentration found in the human bloodstream trigger gene expression in the blood-relevant human pathogen Staphylococcus aureus, suggesting that flow sensitizes bacteria to chemical stress in natural environments.

Original languageEnglish (US)
Article numbere2216774120
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number11
StatePublished - Mar 8 2023


  • Pseudomonas aeruginosa
  • hydrogen peroxide
  • mechanosensing
  • microfluidics
  • shear flow

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Shear rate sensitizes bacterial pathogens to H2O2 stress'. Together they form a unique fingerprint.

Cite this