Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations

Research output: Contribution to journalArticlepeer-review

Abstract

Particle shape plays a vital role in granular material behavior, but simulations with realistic particle shapes are uncommon due to significant computational demands of complex particle geometry representation. In this work, BLOKS3D, a polyhedral Discrete Element Method (DEM) and impulse-based DEM (iDEM) codes are parallelized to enable large-scale simulations with realistic particle shapes on readily accessible multi-core machines. Data structures used in the original codes were redesigned and optimized, leading to 15% improved performance of the original serial codes. New parallel algorithms were developed resulting in 28 times performance improvement on a 48-core (quad-CPU) shared memory system over single core serial algorithm. The parallelized 3D polyhedral DEM and iDEM were applied to series of column collapse simulations. The codes successfully reproduced the runout distance in granular column collapse experiments. The particle force data from both parallelized DEM and iDEM matched data from the serial algorithm. The new parallel implementation of iDEM was then demonstrated with unprecedented 52 million 3D polyhedral particles simulations. This work will benefit future granular material studies with the newly introduced capacity to run large-scale simulations with realistic particle shapes on shared memory hardware platforms readily accessible to many engineers and researchers.

Original languageEnglish (US)
Article number104008
JournalComputers and Geotechnics
Volume137
DOIs
StatePublished - Sep 2021

Keywords

  • Discrete element method
  • Impulse-based discrete element method
  • Polyhedral particle
  • Shared-memory parallelization

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations'. Together they form a unique fingerprint.

Cite this