Sequence and entropy-based control of complex coacervates

Li Wei Chang, Tyler K. Lytle, Mithun Radhakrishna, Jason J. Madinya, Jon Vélez, Charles E. Sing, Sarah L. Perry

Research output: Contribution to journalArticlepeer-review


Biomacromolecules rely on the precise placement of monomers to encode information for structure, function, and physiology. Efforts to emulate this complexity via the synthetic control of chemical sequence in polymers are finding success; however, there is little understanding of how to translate monomer sequence to physical material properties. Here we establish design rules for implementing this sequence-control in materials known as complex coacervates. These materials are formed by the associative phase separation of oppositely charged polyelectrolytes into polyelectrolyte dense (coacervate) and polyelectrolyte dilute (supernatant) phases. We demonstrate that patterns of charges can profoundly affect the charge-charge associations that drive this process. Furthermore, we establish the physical origin of this pattern-dependent interaction: there is a nuanced combination of structural changes in the dense coacervate phase and a 1D confinement of counterions due to patterns along polymers in the supernatant phase.

Original languageEnglish (US)
Article number1273
JournalNature communications
Issue number1
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Sequence and entropy-based control of complex coacervates'. Together they form a unique fingerprint.

Cite this