Semiquantitative Group Testing in at Most Two Rounds

Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Semiquantitative group testing (SQGT) is a pooling method in which the test outcomes represent bounded intervals for the number of defectives. Alternatively, it may be viewed as an adder channel with quantized outputs. SQGT represents a natural choice for Covid-19 group testing as it allows for a straightforward interpretation of the cycle threshold values produced by polymerase chain reactions (PCR). Prior work on SQGT did not address the need for adaptive testing with a small number of rounds as required in practice. We propose conceptually simple methods for two-round and nonadaptive SQGT that significantly improve upon existing schemes by using ideas on nonbinary measurement matrices based on expander graphs and list-disjunct matrices.

Original languageEnglish (US)
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1973-1978
Number of pages6
ISBN (Electronic)9781538682098
DOIs
StatePublished - Jul 12 2021
Event2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australia
Duration: Jul 12 2021Jul 20 2021

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2021-July
ISSN (Print)2157-8095

Conference

Conference2021 IEEE International Symposium on Information Theory, ISIT 2021
Country/TerritoryAustralia
CityVirtual, Melbourne
Period7/12/217/20/21

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Semiquantitative Group Testing in at Most Two Rounds'. Together they form a unique fingerprint.

Cite this