Abstract
Advantageous operation can be achieved in a semiconductor heterostructure light emitting device by utilizing a single thin active layer which exhibits quantum size effects. It has been found that performance can be degraded by employing a single quantum layer that is thinner than a certain minimum thickness, this minimum thickness being about 100 angstroms, (the approximate carrier scattering path length). In one form of the invention, there is provided a semiconductor heterostructure device which includes first and second relatively wide bandgap semiconductor regions of opposite conductivity types. A single quantum well active layer is disposed between the first and second regions. The active layer is formed of a relatively narrow bandgap semiconductor having a thickness which is in the range of about 100 to 400 angstroms, and is preferably about 200 angstroms. One preferred combination of materials for the device comprises aluminium gallium arsenide for the relatively wide bandgap semiconductor regions, and gallium arsenide for the single active layer. However, other combinations of materials may be suitable, for example: indium phosphide for the relatively wide bandgap regions and indium gallium phosphide arsenide for the single active layer; or indium gallium arsenide phosphide for the relatively wide bandgap regions and gallium arsenide phosphide for the single active layer; or aluminium gallium arsenide phosphide for the confining layer and gallium arsenide phosphide for the active layer. The latter two are particularly useful as emitters in the visible portion of the spectrum. In a further form of the invention, there is disclosed a semiconductor heterostructure device wherein the active region comprises one or more quantum layers of an indirect bandgap semiconductor material, preferably germanium.
Original language | English (US) |
---|---|
U.S. patent number | 4270094 |
Filing date | 10/13/78 |
State | Published - May 26 1981 |