Semi-supervised Monocular 3D Object Detection by Multi-view Consistency

Qing Lian, Yanbo Xu, Weilong Yao, Yingcong Chen, Tong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The success of monocular 3D object detection highly relies on considerable labeled data, which is costly to obtain. To alleviate the annotation effort, we propose MVC-MonoDet, the first semi-supervised training framework that improves Monocular 3D object detection by enforcing multi-view consistency. In particular, a box-level regularization and an object-level regularization are designed to enforce the consistency of 3D bounding box predictions of the detection model across unlabeled multi-view data (stereo or video). The box-level regularizer requires the model to consistently estimate 3D boxes in different views so that the model can learn cross-view invariant features for 3D detection. The object-level regularizer employs an object-wise photometric consistency loss that mitigates 3D box estimation error through structure-from-motion (SFM). A key innovation in our approach to effectively utilize these consistency losses from multi-view data is a novel relative depth module that replaces the standard depth module in vanilla SFM. This technique allows the depth estimation to be coupled with the estimated 3D bounding boxes, so that the derivative of consistency regularization can be used to directly optimize the estimated 3D bounding boxes using unlabeled data. We show that the proposed semi-supervised learning techniques effectively improve the performance of 3D detection on the KITTI and nuScenes datasets. We also demonstrate that the framework is flexible and can be adapted to both stereo and video data.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer
Pages715-731
Number of pages17
ISBN (Print)9783031200731
DOIs
StatePublished - 2022
Externally publishedYes
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: Oct 23 2022Oct 27 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13668 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period10/23/2210/27/22

Keywords

  • Monocular 3D object detection
  • Semi-supervised training
  • Structure from motion

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Semi-supervised Monocular 3D Object Detection by Multi-view Consistency'. Together they form a unique fingerprint.

Cite this