Semantic segmentation using regions and parts

Pablo Arbelaez, Bharath Hariharan, Chunhui Gu, Saurabh Gupta, Lubomir Bourdev, Jitendra Malik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We address the problem of segmenting and recognizing objects in real world images, focusing on challenging articulated categories such as humans and other animals. For this purpose, we propose a novel design for region-based object detectors that integrates efficiently top-down information from scanning-windows part models and global appearance cues. Our detectors produce class-specific scores for bottom-up regions, and then aggregate the votes of multiple overlapping candidates through pixel classification. We evaluate our approach on the PASCAL segmentation challenge, and report competitive performance with respect to current leading techniques. On VOC2010, our method obtains the best results in 6/20 categories and the highest performance on articulated objects.

Original languageEnglish (US)
Title of host publication2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
Pages3378-3385
Number of pages8
DOIs
StatePublished - 2012
Externally publishedYes
Event2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012 - Providence, RI, United States
Duration: Jun 16 2012Jun 21 2012

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
Country/TerritoryUnited States
CityProvidence, RI
Period6/16/126/21/12

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Semantic segmentation using regions and parts'. Together they form a unique fingerprint.

Cite this