TY - GEN
T1 - Semantic proximity search on graphs with metagraph-based learning
AU - Fang, Yuan
AU - Lin, Wenqing
AU - Zheng, Vincent W.
AU - Wu, Min
AU - Chang, Kevin Chen Chuan
AU - Li, Xiao Li
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/6/22
Y1 - 2016/6/22
N2 - Given ubiquitous graph data such as the Web and social networks, proximity search on graphs has been an active research topic. The task boils down to measuring the proximity between two nodes on a graph. Although most earlier studies deal with homogeneous or bipartite graphs only, many real-world graphs are heterogeneous with objects of various types, giving rise to different semantic classes of proximity. For instance, on a social network two users can be close for different reasons, such as being classmates or family members, which represent two distinct classes of proximity. Thus, it becomes inadequate to only measure a generic form of proximity as previous works have focused on. In this paper, we identify metagraphs as a novel and effective means to characterize the common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity, and employ a supervised technique to automatically learn the right form of proximity within its family to suit the desired class. As it is expensive to match (i.e., find the instances of) a metagraph, we propose the novel approaches of dual-stage training and symmetry-based matching to speed up. Finally, our experiments reveal that our approach is significantly more accurate and efficient. For accuracy, we outperform the baselines by 11% and 16% in NDCG and MAP, respectively. For efficiency, dual-stage training reduces the overall matching cost by 83%, and symmetry-based matching further decreases the cost of individual metagraphs by 52%.
AB - Given ubiquitous graph data such as the Web and social networks, proximity search on graphs has been an active research topic. The task boils down to measuring the proximity between two nodes on a graph. Although most earlier studies deal with homogeneous or bipartite graphs only, many real-world graphs are heterogeneous with objects of various types, giving rise to different semantic classes of proximity. For instance, on a social network two users can be close for different reasons, such as being classmates or family members, which represent two distinct classes of proximity. Thus, it becomes inadequate to only measure a generic form of proximity as previous works have focused on. In this paper, we identify metagraphs as a novel and effective means to characterize the common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity, and employ a supervised technique to automatically learn the right form of proximity within its family to suit the desired class. As it is expensive to match (i.e., find the instances of) a metagraph, we propose the novel approaches of dual-stage training and symmetry-based matching to speed up. Finally, our experiments reveal that our approach is significantly more accurate and efficient. For accuracy, we outperform the baselines by 11% and 16% in NDCG and MAP, respectively. For efficiency, dual-stage training reduces the overall matching cost by 83%, and symmetry-based matching further decreases the cost of individual metagraphs by 52%.
UR - http://www.scopus.com/inward/record.url?scp=84980390292&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84980390292&partnerID=8YFLogxK
U2 - 10.1109/ICDE.2016.7498247
DO - 10.1109/ICDE.2016.7498247
M3 - Conference contribution
AN - SCOPUS:84980390292
T3 - 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016
SP - 277
EP - 288
BT - 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 32nd IEEE International Conference on Data Engineering, ICDE 2016
Y2 - 16 May 2016 through 20 May 2016
ER -