TY - JOUR
T1 - Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels
AU - Raghunathan, A. V.
AU - Aluru, N. R.
PY - 2007/7/17
Y1 - 2007/7/17
N2 - A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2 nm and 3.5 nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2 ns simulation time K+ ions can permeate through a 1 nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.
AB - A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2 nm and 3.5 nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2 ns simulation time K+ ions can permeate through a 1 nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.
UR - http://www.scopus.com/inward/record.url?scp=34547181734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547181734&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.76.011202
DO - 10.1103/PhysRevE.76.011202
M3 - Article
C2 - 17677433
AN - SCOPUS:34547181734
SN - 1539-3755
VL - 76
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 1
M1 - 011202
ER -