Self-adaptive hierarchical sentence model

Han Zhao, Zhengdong Lu, Pascal Poupart

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The ability to accurately model a sentence at varying stages (e.g., word-phrase-sentence) plays a central role in natural language processing. As an effort towards this goal we propose a self-adaptive hierarchical sentence model (AdaSent). AdaSent effectively forms a hierarchy of representations from words to phrases and then to sentences through recursive gated local composition of adjacent segments. We design a competitive mechanism (through gating networks) to allow the representations of the same sentence to be engaged in a particular learning task (e.g., classification), therefore effectively mitigating the gradient vanishing problem persistent in other recursive models. Both qualitative and quantitative analysis shows that AdaSent can automatically form and select the representations suitable for the task at hand during training, yielding superior classification performance over competitor models on 5 benchmark data sets.

Original languageEnglish (US)
Title of host publicationIJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
EditorsMichael Wooldridge, Qiang Yang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4069-4076
Number of pages8
ISBN (Electronic)9781577357384
StatePublished - 2015
Externally publishedYes
Event24th International Joint Conference on Artificial Intelligence, IJCAI 2015 - Buenos Aires, Argentina
Duration: Jul 25 2015Jul 31 2015

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2015-January
ISSN (Print)1045-0823

Other

Other24th International Joint Conference on Artificial Intelligence, IJCAI 2015
Country/TerritoryArgentina
CityBuenos Aires
Period7/25/157/31/15

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Self-adaptive hierarchical sentence model'. Together they form a unique fingerprint.

Cite this