Selenium partitioning and stable isotope ratios in urban topsoils

Kathrin Schilling, Thomas M. Johnson, Wolfgang Wilcke

Research output: Contribution to journalArticlepeer-review

Abstract

A combination of sequential extraction with stable isotope ratio measurements of Se might off er new insights into biogeochemical processes governing Se turnover in soils. Th erefore, we determined the Se partitioning among three operationally defined sequential extracts (0.1 mol L -1 K 2HPO 4-KH 2PO 4 at pH 7, 0.05 mol L -1 NaOH, conc. HNO 3) and the stable isotope ratios of total Se (δ 82/76Se values) in 10 topsoils under 5 different land uses (alluvial grasslands, forests, house gardens, parks, and roadside grassland) from the city of Bayreuth (ca. 73,000 inhabitants) in Germany. Furthermore, we determined S and SO 4 2- concentrations and stable isotope ratios of total S (δ 34S values) to support our interpretation of the Se concentrations and isotope ratios because of the chemical similarity of Se and S. All topsoils had low total Se concentrations (0.09-0.52 mg kg -1). The largest contribution to total Se was extracted with NaOH comprising up to 42%,which is thought to be associated with organic matter and metal oxides. The δ 82/76Se values of total Se in the topsoils were close to the bulk Earth composition with an average δ 82/76Se value of -0.03 ± SD 0.38% suggesting that there was no or little Se isotope fractionation in soil. We attribute the small isotope fractionation to the low bioavailability of Se as a consequence of the presence of Fe oxides (adsorbing the dominating Se(IV) forms strongly), organic matter, and SO 4 2- (prevents biouptake of the Se(IV) forms) in the study soils. Small Se isotope fractionations of -0.59 to -0.35% in mainly forest soils and of 0.26 to 0.45% in mainly alluvial soils were presumably caused by soil/plant-recycling and Se contamination by river water, respectively. In spite of the similarities in the assimilation of S and Se by organisms, the total S and Se isotope ratios in soil were not correlated. Our results demonstrate that Se in urban soils developed from Se-poor substrates is minimally cycled through the biosphere likely because of low bioavailability and competition with SO 4 2-.

Original languageEnglish (US)
Pages (from-to)1354-1364
Number of pages11
JournalSoil Science Society of America Journal
Volume75
Issue number4
DOIs
StatePublished - Jul 2011

ASJC Scopus subject areas

  • Soil Science

Fingerprint

Dive into the research topics of 'Selenium partitioning and stable isotope ratios in urban topsoils'. Together they form a unique fingerprint.

Cite this