TY - JOUR
T1 - Selection of Reference Genes for RT-qPCR Analysis in the Hawthorn Spider Mite, Amphitetranychus viennensis (Acarina: Tetranychidae), Under Acaricide Treatments
AU - Zhang, Yuying
AU - Zhang, Zhonghuan
AU - Ren, Meifeng
AU - Liu, Xiangying
AU - Zhou, Xuguo
AU - Yang, Jing
N1 - Publisher Copyright:
© 2022 The Author(s) 2022. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Hawthorn spider mite, Amphitetranychus viennensis Zacher, one of the most damaging arthropod pests for Rosaceaous fruit trees and ornamentals, has developed resistance to most of the commercially available acaricides. To understand the molecular basis of acaricide resistance, a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) following the MIQE (minimum information for publication of quantitative real time PCR experiments) guidelines is needed. In this study, we screened for the internal references in A. viennensis to study in acaricide resistance. In total, 10 candidate reference genes, including EF1A, 28S rRNA, 18S rRNA, α-tubulin, Actin3, RPS9, GAPDH, V-ATPase B, RPL13, and V-ATPase A, were assessed under the treatments of four commonly used acaricides with distinct mode-of-actions (MOAs). Based on the Insecticide Resistance Action Committee MOA classification, avermectin, bifenazate, spirodiclofen, and fenpropathrin belong to group 6, 20D, 23, and 3A, respectively. The expression profiles of these candidate genes were evaluated using geNorm, Normfinder, BestKeeper, and ΔCt methods, respectively. Eventually, different sets of reference genes were recommended for each acaricide according to RefFinder, a comprehensive platform integrating all four above-mentioned algorithms. Specifically, the top three recommendations were 1) 28S, V-ATPase A, and Actin 3 for avermectin, 2) GAPDH, RPS9, and 28S for bifenazate, 3) Actin 3, V-ATPase B, and α-tubulin for spirodiclofen, and 4) Actin 3, α-tubulin, and V-ATPase A for fenpropathrin. Although unique sets of genes are proposed for each acaricide, α-tubulin, EF1A, and GAPDH are the most consistently stably expressed reference genes when A. viennensis was challenged chemically. Our findings lay the foundation for the study of acaricide resistance in the phytophagous mites in general, and in the hawthorn spider mite, A. viennensis, in particular.
AB - Hawthorn spider mite, Amphitetranychus viennensis Zacher, one of the most damaging arthropod pests for Rosaceaous fruit trees and ornamentals, has developed resistance to most of the commercially available acaricides. To understand the molecular basis of acaricide resistance, a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) following the MIQE (minimum information for publication of quantitative real time PCR experiments) guidelines is needed. In this study, we screened for the internal references in A. viennensis to study in acaricide resistance. In total, 10 candidate reference genes, including EF1A, 28S rRNA, 18S rRNA, α-tubulin, Actin3, RPS9, GAPDH, V-ATPase B, RPL13, and V-ATPase A, were assessed under the treatments of four commonly used acaricides with distinct mode-of-actions (MOAs). Based on the Insecticide Resistance Action Committee MOA classification, avermectin, bifenazate, spirodiclofen, and fenpropathrin belong to group 6, 20D, 23, and 3A, respectively. The expression profiles of these candidate genes were evaluated using geNorm, Normfinder, BestKeeper, and ΔCt methods, respectively. Eventually, different sets of reference genes were recommended for each acaricide according to RefFinder, a comprehensive platform integrating all four above-mentioned algorithms. Specifically, the top three recommendations were 1) 28S, V-ATPase A, and Actin 3 for avermectin, 2) GAPDH, RPS9, and 28S for bifenazate, 3) Actin 3, V-ATPase B, and α-tubulin for spirodiclofen, and 4) Actin 3, α-tubulin, and V-ATPase A for fenpropathrin. Although unique sets of genes are proposed for each acaricide, α-tubulin, EF1A, and GAPDH are the most consistently stably expressed reference genes when A. viennensis was challenged chemically. Our findings lay the foundation for the study of acaricide resistance in the phytophagous mites in general, and in the hawthorn spider mite, A. viennensis, in particular.
KW - acaricide
KW - Amphitetranychus viennensis
KW - hawthorn spider mite
KW - reference gene
KW - RT-qPCR
UR - http://www.scopus.com/inward/record.url?scp=85128492627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128492627&partnerID=8YFLogxK
U2 - 10.1093/jee/toac019
DO - 10.1093/jee/toac019
M3 - Article
C2 - 35297479
AN - SCOPUS:85128492627
SN - 0022-0493
VL - 115
SP - 662
EP - 670
JO - Journal of economic entomology
JF - Journal of economic entomology
IS - 2
ER -