Segmented ultralight pre-aligned rotor for extreme-scale wind turbines

Eric Loth, Adam Steele, Brian Ichter, Michael Selig, Patrick Moriarty

Research output: Contribution to conferencePaper

Abstract

To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale turbines, a downwind rotor concept is proposed which employs fixed blade curvature based on force alignment at rated conditions. For a given peak stress constraint, the reduction in downwind cantilever loads allows reduced shell and spar thickness, and thus a reduced blade mass as compared with a conventional upwind rotor, especially as rotor sizes approach extreme-scales. To quantify this mass reduction, a Finite Element Analysis was conducted for a 10 MW rated rotor based on the NREL offshore 5 MW baseline wind turbine. The results show that this "pre-alignment" yields a net downstream deflection of 32 deg, a downward hub-pitch angle of 6 deg, a 20% increase in blade length (to maintain the same radius as the conventional blade), and a net mass savings of about 50% through decreased shell and spar thicknesses. The pre-alignment may also allow a more straightforward and efficient segmentation of the blade since shear stresses near joints are substantially reduced. Segmenting, in turn, can dramatically reduce costs associated with fabrication, transport and assembly for extreme-scale off-shore systems. The pre-aligned geometric curvature can also help alleviate tower wake effects on the blades since blade tips (where shadow effects can be most problematic) are shifted downstream where the tower wake is weaker. In addition, the portion of the tower that is upstream of the blade tips can be faired with an externally-rotating aerodynamic shroud. Furthermore, the downwind rotor can allow a floating off-shore tri-pod platform to reduce tower weight and yaw-control requirements. A simple economic analysis of the segmented ultralight pre-aligned rotor (SUPAR) concept suggests that the overall system cost savings can be as much as 25%, indicating that more detailed (numerical and experimental) investigations are warranted.

Original languageEnglish (US)
StatePublished - Jun 20 2012
Event50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition - Nashville, TN, United States
Duration: Jan 9 2012Jan 12 2012

Other

Other50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
CountryUnited States
CityNashville, TN
Period1/9/121/12/12

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Segmented ultralight pre-aligned rotor for extreme-scale wind turbines'. Together they form a unique fingerprint.

  • Cite this

    Loth, E., Steele, A., Ichter, B., Selig, M., & Moriarty, P. (2012). Segmented ultralight pre-aligned rotor for extreme-scale wind turbines. Paper presented at 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, United States.