Abstract
In this paper, we propose a novel segmentation-based denoising algorithm. Segmentation yields intrinsically homogeneous and extrinsically heterogeneous regions. A denoising algorithm that uses Multiple Compaction Domains (MCD) is then applied on each of the resulting segments. Such a scheme retains important perceptual information in the segment boundaries while the denoising algorithm operates only on homogeneous segments. Further, the MCD algorithm is demonstrably superior to the classical denoising algorithms using transform domain thresholding. Our algorithm yields better perceptual quality and superior PSNR as compared to MATLAB's adaptive Wiener filter.
Original language | English (US) |
---|---|
Pages | 372-375 |
Number of pages | 4 |
State | Published - 1999 |
Event | International Conference on Image Processing (ICIP'99) - Kobe, Jpn Duration: Oct 24 1999 → Oct 28 1999 |
Other
Other | International Conference on Image Processing (ICIP'99) |
---|---|
City | Kobe, Jpn |
Period | 10/24/99 → 10/28/99 |
ASJC Scopus subject areas
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering