TY - GEN
T1 - Seeing motion in the dark
AU - Chen, Chen
AU - Chen, Qifeng
AU - Do, Minh
AU - Koltun, Vladlen
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Deep learning has recently been applied with impressive results to extreme low-light imaging. Despite the success of single-image processing, extreme low-light video processing is still intractable due to the difficulty of collecting raw video data with corresponding ground truth. Collecting long-exposure ground truth, as was done for single-image processing, is not feasible for dynamic scenes. In this paper, we present deep processing of very dark raw videos: On the order of one lux of illuminance. To support this line of work, we collect a new dataset of raw low-light videos, in which high-resolution raw data is captured at video rate. At this level of darkness, the signal-to-noise ratio is extremely low (negative if measured in dB) and the traditional image processing pipeline generally breaks down. A new method is presented to address this challenging problem. By carefully designing a learning-based pipeline and introducing a new loss function to encourage temporal stability, we train a siamese network on static raw videos, for which ground truth is available, such that the network generalizes to videos of dynamic scenes at test time. Experimental results demonstrate that the presented approach outperforms state-of-the-art models for burst processing, per-frame processing, and blind temporal consistency.
AB - Deep learning has recently been applied with impressive results to extreme low-light imaging. Despite the success of single-image processing, extreme low-light video processing is still intractable due to the difficulty of collecting raw video data with corresponding ground truth. Collecting long-exposure ground truth, as was done for single-image processing, is not feasible for dynamic scenes. In this paper, we present deep processing of very dark raw videos: On the order of one lux of illuminance. To support this line of work, we collect a new dataset of raw low-light videos, in which high-resolution raw data is captured at video rate. At this level of darkness, the signal-to-noise ratio is extremely low (negative if measured in dB) and the traditional image processing pipeline generally breaks down. A new method is presented to address this challenging problem. By carefully designing a learning-based pipeline and introducing a new loss function to encourage temporal stability, we train a siamese network on static raw videos, for which ground truth is available, such that the network generalizes to videos of dynamic scenes at test time. Experimental results demonstrate that the presented approach outperforms state-of-the-art models for burst processing, per-frame processing, and blind temporal consistency.
UR - http://www.scopus.com/inward/record.url?scp=85081907084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081907084&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2019.00328
DO - 10.1109/ICCV.2019.00328
M3 - Conference contribution
AN - SCOPUS:85081907084
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 3184
EP - 3193
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Y2 - 27 October 2019 through 2 November 2019
ER -