Searching video for complex activities with finite state models

Nazli Ikizler, David Forsyth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We describe a method of representing human activities that allows a collection of motions to be queried without examples, using a simple and effective query language. Our approach is based on units of activity at segments of the body, that can be composed across space and across the body to produce complex queries. The presence of search units is inferred automatically by tracking the body, lifting the tracks to 3D and comparing to models trained using motion capture data. We show results for a large range of queries applied to a collection of complex motion and activity. Our models of short time scale limb behaviour are built using labelled motion capture set. We compare with discriminative methods applied to tracker data; our method offers significantly improved performance. We show experimental evidence that our method is robust to view direction and is unaffected by the changes of clothing.

Original languageEnglish (US)
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - 2007
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: Jun 17 2007Jun 22 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
CountryUnited States
CityMinneapolis, MN
Period6/17/076/22/07

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Searching video for complex activities with finite state models'. Together they form a unique fingerprint.

Cite this