Search bias quantification: investigating political bias in social media and web search

Juhi Kulshrestha, Motahhare Eslami, Johnnatan Messias, Muhammad Bilal Zafar, Saptarshi Ghosh, Krishna P. Gummadi, Karrie Karahalios

Research output: Contribution to journalArticle

Abstract

Users frequently use search systems on the Web as well as online social media to learn about ongoing events and public opinion on personalities. Prior studies have shown that the top-ranked results returned by these search engines can shape user opinion about the topic (e.g., event or person) being searched. In case of polarizing topics like politics, where multiple competing perspectives exist, the political bias in the top search results can play a significant role in shaping public opinion towards (or away from) certain perspectives. Given the considerable impact that search bias can have on the user, we propose a generalizable search bias quantification framework that not only measures the political bias in ranked list output by the search system but also decouples the bias introduced by the different sources—input data and ranking system. We apply our framework to study the political bias in searches related to 2016 US Presidential primaries in Twitter social media search and find that both input data and ranking system matter in determining the final search output bias seen by the users. And finally, we use the framework to compare the relative bias for two popular search systems—Twitter social media search and Google web search—for queries related to politicians and political events. We end by discussing some potential solutions to signal the bias in the search results to make the users more aware of them.

Original languageEnglish (US)
Pages (from-to)188-227
Number of pages40
JournalInformation Retrieval Journal
Volume22
Issue number1-2
DOIs
StatePublished - Apr 15 2019

Keywords

  • Political bias inference
  • Search bias
  • Search bias quantification
  • Social media search
  • Sources of search bias
  • Web search

ASJC Scopus subject areas

  • Information Systems
  • Library and Information Sciences

Fingerprint Dive into the research topics of 'Search bias quantification: investigating political bias in social media and web search'. Together they form a unique fingerprint.

  • Cite this