Abstract
Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%-45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.
Original language | English (US) |
---|---|
Article number | 042202 |
Journal | Journal of Vacuum Science and Technology B |
Volume | 42 |
Issue number | 4 |
DOIs | |
State | Published - Jul 1 2024 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry