TY - GEN
T1 - Schema-Based Data Augmentation for Event Extraction
AU - Jin, Xiaomeng
AU - Ji, Heng
N1 - We thank the anonymous reviewers helpful suggestions. This research is based upon work supported by U.S. DARPA KAIROS Program No. FA8750-19-2-1004 and SemaFor by U.S. DARPA SemaFor Program No. HR001120C0123. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.
PY - 2024
Y1 - 2024
N2 - Event extraction is a crucial task for semantic understanding and structured knowledge construction. However, the expense of collecting and labeling data for training event extraction models is usually high. To address this issue, we propose a novel schema-based data augmentation method that utilizes event schemas to guide the data generation process. The event schemas depict the typical patterns of complex events and can be used to create new synthetic data for event extraction. Specifically, we sub-sample from the schema graph to obtain a subgraph, instantiate the schema subgraph, and then convert the instantiated subgraph to natural language texts. We conduct extensive experiments on event trigger detection, event trigger extraction, and event argument extraction tasks using two datasets (including five scenarios). The experimental results demonstrate that our proposed data-augmentation method produces high-quality generated data and significantly enhances the model performance, with up to 12% increase in F1 score on event trigger detection task compared to baseline methods.
AB - Event extraction is a crucial task for semantic understanding and structured knowledge construction. However, the expense of collecting and labeling data for training event extraction models is usually high. To address this issue, we propose a novel schema-based data augmentation method that utilizes event schemas to guide the data generation process. The event schemas depict the typical patterns of complex events and can be used to create new synthetic data for event extraction. Specifically, we sub-sample from the schema graph to obtain a subgraph, instantiate the schema subgraph, and then convert the instantiated subgraph to natural language texts. We conduct extensive experiments on event trigger detection, event trigger extraction, and event argument extraction tasks using two datasets (including five scenarios). The experimental results demonstrate that our proposed data-augmentation method produces high-quality generated data and significantly enhances the model performance, with up to 12% increase in F1 score on event trigger detection task compared to baseline methods.
KW - Data Augmentation
KW - Event Extraction
KW - Information Extraction
UR - http://www.scopus.com/inward/record.url?scp=85195973335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195973335&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85195973335
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 14382
EP - 14392
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Y2 - 20 May 2024 through 25 May 2024
ER -