Scalable molecular dynamics for large biomolecular systems

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

Original languageEnglish (US)
Title of host publicationSC 2000 - Proceedings of the 2000 ACM/IEEE Conference on Supercomputing
PublisherAssociation for Computing Machinery
ISBN (Electronic)0780398025
DOIs
StatePublished - 2000
Event2000 ACM/IEEE Conference on Supercomputing, SC 2000 - Dallas, United States
Duration: Nov 4 2000Nov 10 2000

Publication series

NameProceedings of the International Conference on Supercomputing
Volume2000-November

Conference

Conference2000 ACM/IEEE Conference on Supercomputing, SC 2000
Country/TerritoryUnited States
CityDallas
Period11/4/0011/10/00

ASJC Scopus subject areas

  • General Computer Science

Fingerprint

Dive into the research topics of 'Scalable molecular dynamics for large biomolecular systems'. Together they form a unique fingerprint.

Cite this