Abstract
General-purpose processors are expected to be increasingly employed for multimedia workloads on systems where reducing energy consumption is an important goal. Researchers have proposed the use of two forms of hardware adaptation - architectural adaptation and dynamic voltage (and frequency) scaling or DVS - to reduce energy. This paper develops and evaluates an integrated algorithm to control both architectural adaptation and DVS targeted to multimedia applications. It also examines the interaction between the two forms of adaptation, identifying when each will perform better in isolation and when the addition of architectural adaptation will benefit DVS. Our adaptation control algorithm is effective in saving energy and exploits most of the available potential. For the applications and systems studied, DVS is consistently better than architectural adaptation in isolation. The addition of architectural adaptation to DVS benefits some applications, but not all. Finally, in a seemingly counter-intuitive result, we find that while less aggressive architectures reduce energy for fixed frequency hardware, with DVS, more aggressive architectures are often more energy efficient.
Original language | English (US) |
---|---|
Pages (from-to) | 250-261 |
Number of pages | 12 |
Journal | Proceedings of the Annual International Symposium on Microarchitecture |
State | Published - 2001 |
Event | 34th Annual International Symposium on Microarchitecture ACM/IEEE 2001 - Austin, TX, United States Duration: Dec 1 2001 → Dec 5 2001 |
ASJC Scopus subject areas
- Hardware and Architecture
- Software